Computational tools help create new living organism

A colony of the new Syn61 bacteria; credit: BBC

Creating life

In a remarkable development with far-reaching consequences, researchers at the Cambridge Laboratory of Molecular Biology have used a computer program to rewrite the DNA of the well-known bacteria Escherichia coli (more commonly known as “E. coli”) to produce a functioning, reproducing species that is far more complex than any previous similar synthetic biology effort.

Venter’s 2010 project

This effort has its roots in a project spearheaded by J. Craig Venter, the well-known maverick biomedical researcher known for the “shotgun” approach to genome sequencing pioneered by his team at

Continue reading Computational tools help create new living organism

Researchers use “magic functions” to prove sphere-packing results

Optimal stacking of oranges.

The sphere-packing problem

The Kepler conjecture is the assertion that the simple scheme of stacking oranges typically seen in a supermarket has the highest possible average density, namely pi/(3 sqrt(2)) = 0.740480489…, for any possible arrangement, regular or irregular. It is named after 17th-century astronomer Johannes Kepler, who first proposed that planets orbited in elliptical paths around the sun.

Hales’ proof of the Kepler conjecture

In the early 1990s, Thomas Hales, following an approach first suggested by Laszlo Fejes Toth in 1953, determined that the maximum density of all possible arrangements could be obtained

Continue reading Researchers use “magic functions” to prove sphere-packing results

Pi, climate change denial and creationism

Introduction

Right off, it may not sound like pi, climate change denial and young-Earth creationism have much in common. In fact, there is an important connection. Here is some background.

Credit: Michele Vallisneri, NASA JPL

Computing pi

Pi = 3.1415926535…, namely the ratio between the circumference of a circle and its diameter, has fascinated not only mathematicians and scientists but the public at large for centuries. Archimedes (c.287–212 BCE) was the first to present a scheme for calculating pi as a limit of perimeters of inscribed and circumscribed polygons, as illustrated briefly in the graphic to the right (see

Continue reading Pi, climate change denial and creationism

Google AI system proves over 1200 mathematical theorems

The Chudnovsky formula for Pi (Credit: Craig Wood)

AI’s rocky start

The modern field of artificial intelligence (AI) began in 1950 with Alan Turing’s landmark paper Computing machinery and intelligence, which outlined the principles of AI and proposed a test, now known as the Turing test, for establishing whether AI had been achieved. Although early researchers were confident that AI systems would soon be a reality, inflated promises and expectations led to the “AI Winter” in the 1970s, a phenomenon that sadly was repeated again, in the late 1980s and early 1990s, when a second wave of AI systems

Continue reading Google AI system proves over 1200 mathematical theorems

P-hacking and scientific reproducibility

Credit: Wikimedia

The reproducibility crisis in science

Recent public reports have underscored a crisis of reproducibility in numerous fields of science. Here are just a few of recent cases that have attracted widespread publicity:

In 2012, Amgen researchers reported that they were able to reproduce fewer than 10 of 53 cancer studies. In 2013, in the wake of numerous recent instances of highly touted pharmaceutical products failing or disappointing when fielded, researchers in the field began promoting the All Trials movement, which would require participating firms and researchers to post the results of all trials, successful or not. In

Continue reading P-hacking and scientific reproducibility

An n log(n) algorithm for multiplication

MathJax TeX Test PageMathJax.Hub.Config({tex2jax: {inlineMath: [[‘$’,’$’], [‘\\(‘,’\\)’]]}});

Credit: MathIsFun.com

The discovery of decimal arithmetic

The discovery of decimal arithmetic in ancient India, together with the well-known schemes for long multiplication and long division, surely must rank as one of the most important discoveries in the history of science. The date of this discovery, by an unknown Indian mathematician or group of mathematicians, was recently pushed back to the third century CE, based on the recent dating of the Bakhshali manuscript, but it probably happened earlier, perhaps around 0 CE.

Arithmetic on modern computers

Computers, of course, do not use

Continue reading An n log(n) algorithm for multiplication

LENR: A skeptical perspective

LENR: Science or pseudoscience?

As chronicled in the earlier Math Scholar blog, a community of researchers has been pursuing a new green energy source, known as “low energy nuclear reaction” (LENR) physics, or, variously, “lattice-assisted nuclear reaction” (LANR) physics or “condensed matter nuclear reaction” (CMNR) physics. This work harkens back to 1989, when University of Utah researchers Martin Fleischmann and Stanley Pons that they had achieved desktop “cold fusion,” in a hastily called news conference. After several other laboratories failed to reproduce these findings, the scientific community quickly concluded that the Utah researchers were mistaken, to put it mildly.

But

Continue reading LENR: A skeptical perspective

Karen Uhlenbeck wins the Abel Prize

The Norwegian Academy of Science and Letters has awarded the Abel Prize, a mathematical award often regarded as on a level with the Nobel Prize, to Karen Uhlenbeck of the University of Texas, USA.

The award cited her work in geometric analysis, gauge theory and global analysis, which has application across a broad range of modern mathematics and mathematical physics, including models for particle physics, string theory and general relativity.

Her career began in the mid-1960s, under the advisor Richard Palais. Palais had been exploring some connections between analysis (generalizations of calculus) and topology and geometry (the mathematical theory of

Continue reading Karen Uhlenbeck wins the Abel Prize

LENR energy: Science or pseudoscience?

Credit: IPCC

The threat of climate change

The threat of climate change is emerging as the premier global issue of our time. As a recent report by the Intergovernmental Panel on Climate Change (IPCC) grimly warns, even a 1.5 degree C (2.7 degree F) rise in global temperatures would have “substantial” consequences, in terms of extreme weather, damage to ecosystems and calamitous impact on human communities. But limiting the increase to 1.5 degree C will still require a wrenching change away from fossil fuels and an equally wrenching realignment of global economies, all over the next decade or as

Continue reading LENR energy: Science or pseudoscience?

New result for Mordell’s cube sum problem

MathJax TeX Test PageMathJax.Hub.Config({tex2jax: {inlineMath: [[‘$’,’$’], [‘\\(‘,’\\)’]]}});

Mordell’s cube sum problem

In 1957, British-American mathematician Louis Mordell asked whether, given some integer $k$, there are integers $x, y, z$ such that $x^3 + y^3 + z^3 = k$. Like Fermat’s last theorem, this problem is very easily stated but very difficult to explore, much less solve definitively.

Some solutions are easy. When $k = 3$, for instance, there are two simple solutions: $1^3 + 1^3 + 1^3 = 3$ and $4^3 + 4^3 + (-5)^3 = 3$. It is also known that there are no solutions in other cases, including

Continue reading New result for Mordell’s cube sum problem